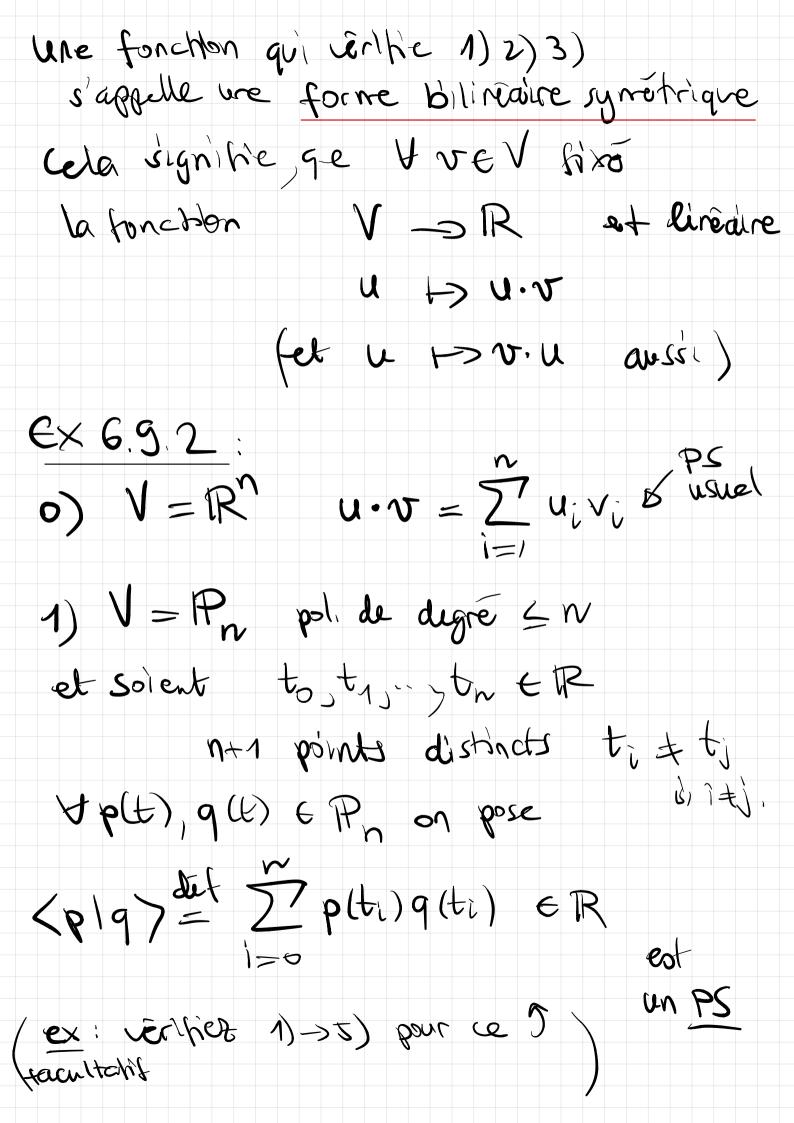
Cours 13.1 S 6,9 Espaces vectoriels
avec produit scalaire 10.12.24 (NPO: evaluation) général ser le produit scalaire usuel (dans Rⁿ) Seance Rag à un esp. vecto V. vendred: 17 janver 2025 Det 6.9.1: Soit V un espace cotoriel [whalem] (de din gelconge, y conpris din(V)=+00) on appelle produit scarcine sur V, toute to notion (ulv) (ulv),...) $V \times V \longrightarrow \mathbb{R}$ $(u, v) \mapsto u \cdot v$ qu'i verifie les cond suiventes: 1) $u \cdot v = v \cdot u$ (syretric) 2) $(u+v)\cdot w = u\cdot w + v\cdot w$ linearle (xv) $(xv)\cdot v = (xv)$ $(xv)\cdot v = x$ $(xv)\cdot v = x$ 4) u·u > OR (positivité) (digénéré) 5) u·u = or 40 u=0v



1)
$$t_0 = -1$$
 $t_1 = 0$ $t_2 = 1$
 $P_2 \times P_2 \rightarrow P_2$
 $(P, q) \mapsto (P|q) = P(-1)q(-1)$
 $+ p(0)q(0) + p(0)q(0)$

2) $V = M_{nxn}(R)$ on pose

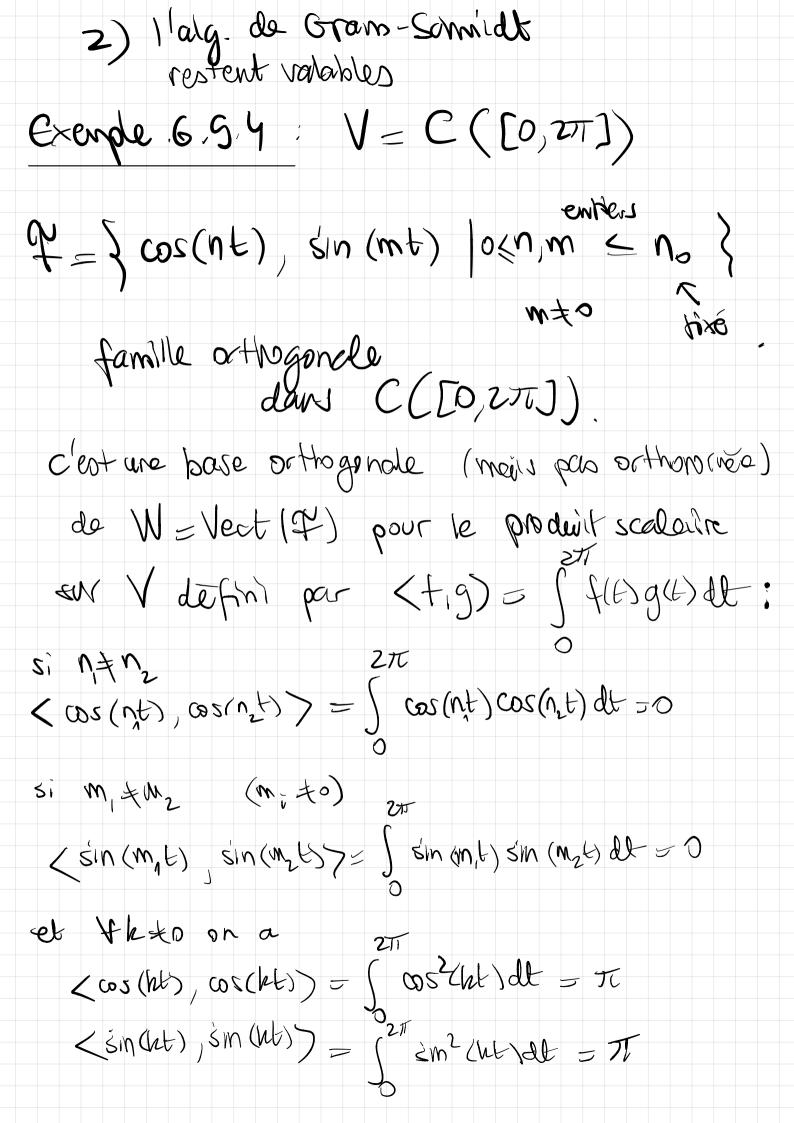
 $\langle A|B \rangle = Tr(AB) = \sum_{i=1}^{n} \langle AB \rangle_{ii}$
evi on PS.

3) $V = C([a|b])$ a $\langle b \in R$
 $\langle f_1g \in C([a|b])$ on pose

 $\langle f_1g = \int_{-\infty}^{\infty} f(b)g(b)db \in R$
 $\langle f_1g = \int_{-\infty}^{\infty} f(b)g(b)db \in R$

3') V = C ([0,27]) & très uti	
3) $V = C([0,2\pi])$ at their which on the iig	inal.
Remarge 6.9.3: SI V est mun	du PS.
alors on peut déphir les rotions	do
- longueu/voine d'un ve V: 1/v/1= - cauchy-schwarz:	= / < 0 / 0>
_ Cauchy-schwast;	= \ v.v.
	Anrel
- Iregalité du 1:	
11uto N = 11ull + 11vll	Annel
· U Ct v Lu : intilonazortion	
- angles entre uv (grâce à C	·S)
$\theta = \arccos\left(\frac{\ u\ \ v\ }{\ u \cdot v\ }\right)$	
\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
_ le Thm. de projection orthogona	le;
Si WCV et dim (W) est fil	ile
alois il existe ure TL	
	que

 $Im(proj_{W}) = W$ tg Ker (proju) = W = {VEV | V·W=0} et il existe une décomp unique AUEV $\Lambda = b (\Omega)^{M} (\Lambda) + 5$ EW EW+ (It dim (W) + dim (W+) = dim V) - le procédé de Gran-schridt s'applique Si W est de d'un finle: alors W possède we base or thogorale cad 3 wn, we E W arec Willus (ad w. w. =0) - les formules 1) $\rho roj w(v) = \sum_{i=1}^{p} (v \cdot w_i) w_i$ si junioup) est une base orthog. de W



puis Yn, m > 0 2TT $\langle \cos(nt), \sin(mt) \rangle = \int \cos(nt)\sin(mt)dt = 0$ et pour N=0 cos(nt)=1 4 te [0,27] et donc $<1,1>= \int_{0}^{2\pi} 1 dt = 2\pi$ Utilité: Coeff. de Fourier d'une fonction Soft fe C([0,27]) et W=bet(F)

arec F base orthogonale pour <., > circleson

Alors (a formule 1) plus hart s'applique. $p_{N}(t) = \frac{a_0}{2} + a_1 cos(t) + a_2 cos(2t) + \cdots + a_n cos(n_0t)$ + b, sin (t) + bz sin (2t)+ -+ bnsin (not) $\frac{a_0}{z} = \frac{\angle + 17}{\angle 1, 17} = \frac{\int_{0}^{2\pi} + (t) dt}{2\pi t}$ (NB; 1=cos(0t)) $a_{k} = \frac{\langle f, cos(ht) \rangle}{\langle cos(ht), cos(ht) \rangle} b_{h} = \frac{\langle f, sin(ht) \rangle}{\langle sin(ht), sin(ht) \rangle}$

càd $a_k = \int_0^2 f(t) \cos(ht) dt$ π $a_0 = \int_0^2 \frac{f(t)}{\pi} dt$ $b_k = \int_0^2 f(t) \sin(ht) dt$ Les a_0, a_h, b_h s'appallent

Us coefficients de Fourier de f

et pernettent d'approximer f

avec une fon thou de W

plus de détails: Analyse n avec n > 2.